
Section Notes on Surface Shading and Assignment 3

Niels Joubert

2008-09-16

1 Local Surface Shading

We compute the local shading values of a point on a surface by considering the lights, surface properties
and viewer in the scene. We can do this because light is linear, and we consider only local phenomenon in
shading calculations. We approximate real world lighting using one of the following methods:

• Full Bi-Directional Reflectance Distribution

Calculate fraction of incoming light that reaches the viewer for with ρ = ρ(θviewer, θincidence, λin, λout)
where θincidence is the angle of incoming light w.r.t. the surface normal, and θviewer is the angle of the
viewer w.r.t. the surface normal.

Good:

Bad:

• Component-wise Bi-Directional Reflectance Distribution

Calculate the fraction of incoming light that reaches the viewer for each color component rather than
all λin and λout:

ρr = ρr(θviewer, θincidence) = ρ(θviewer, θincidence,Kr)

ρg = ρg(θviewer, θincidence) = ρ(θviewer, θincidence,Kg)

ρb = ρb(θviewer, θincidence) = ρ(θviewer, θincidence,Kb)

Where Kr gives you the material properties for the red component, and so forth.

Good:

Bad:

• Extended BRDFs

Allow us to model complex light behaviour, although this might not technically be local shading.

Good:

Bad:

All of these models assume that we can look up a ρ value for a given θviewer and θincidence, which
translates to a table lookup in most cases. Thus we build an approximate model of the BRDF that we use
for shading calculations.

1

1.1 Approximate BRDF

The lectures and the book use Phong shading loosely. What is important to understand is that we approxi-
mate the BRDF as the sum of different light terms, which is an approximation of the BRDF:

ρ = ka + kdImax(Î · n̂, 0) + ksImax(r̂ · v̂, 0)p (1)

I = (r, g, b) is the color of the incoming light.
Î is the incidence vector, supplying the angle of incoming light.
n̂ is the surface normal vector.
v̂ is the vector to the viewer.
r̂ is the reflectance vector, supplying the angle of reflected light.
ka, kd and ks, each consisting of (r, g, b), is the ambient, diffuse and specular properties of the material.

1.1.1 Ambient Lighting

Light reflects around a room, illuminating objects uniformly from all sides. We model this effect by simply
setting each object to have a default ambient color, as if some uniform illumination is supplying color to the
object.

1.1.2 Diffuse Lighting

We assume that surfaces are Lambertian

=⇒ they obey Lambert’s Cosine Law
=⇒ color c ∝ cos(θincidence) and c ∝ n̂ · Î

Thus, this states that the color of a point on a surface is independent of the viewer, and depends only
on the angle between the surface normal and the incidence vector (the direction from which light falls on
the point). We want the actual color to depend on both the color of the light source I = (r, g, b) and the
material properties kd = (r, g, b)

ρdiffuse = kdI max(n̂ · Î, 0) (2)

Where ρdiffuse is an (r,g,b) color value. This relation also implies that the most reflection you can get in a
single direction on a matte surface is 1 / (area of unit hemisphere). (Why?)
n̂ needs to be calculated for the surface itself.
Î needs to be calculated by the light according to what type of light it is.

1.1.3 Specular Lighting

The Phong illumination model states that there is a bright, mirror-like reflection of the light source on the
surface. This effect depends on where the viewer is. The effect is the strongest when the viewer vector
and reflectance vector is parallel, and it depends on I = (r,g,b) the incidence color and ks = (r, g, b), the
material properties.

ρspecular = ksImax(r̂ · v̂)p (3)

p is the roughness of the material - it affects how small the specular highlight is.
v̂ is calculated between the point on the surface and the viewer position.
r̂, the reflectance vector, is calculated using Î and n̂:

r̂ = −Î + 2(Î · n̂)n̂ (4)

2

1.2 Applying local shading to an object

So far we have only considered a single point on an object. To shade an object as a whole, we have to take
into consideration that our geometry are made of flat, discrete pieces. We calculate shading over a region
using one of the following methods:

1.2.1 Flat Shading

What is flat shading?

1.2.2 Gouraud Shading

What is gouraud shading?

1.2.3 Phong Shading

What is phong shading?

1.3 Lights

A basic light is characterized by a position in space P̂ and a color intensity I. This allows us to calculate Î

for points on a surface. Lights differ primarily in how their Î vector and I color is calculated.

1.3.1 Point Light

What is a point light?

How do you calculate its Î?

1.3.2 Directional Light

What is a directional light?

How do you calculate its Î?

1.3.3 Spot Light

A spot light is a light that drops off in intensity sharply beyond a predefined border.
A spotlight’s Î is calculated the same as a point light’s Î, but if Î · X̂ > x then I = 0 where x is the size of
the spot, and X̂ is the direction the spot points in.

1.4 More on lighting and shading

Lighting is a complete department in itself at most studios - we have studied the building blocks of most
lighting tools. Some topics that I have not covered in these notes are:

• Falloff (let I be proportional to the distance from the light to the object).

• Anisotropy (make the roughness term p depend on the parameterization of the object).

• Texturing (eg. Bump Mapping is simply perturbing the surface normals)

3

2 Shading Assignment

It would be extra-helpful if you write your shader in such a way that you can reuse the code for your ray-
tracing assignment. We currently work with procedural shaders - they take the world, run some code, and
give you color values.

Aside: How do you draw a shaded 3d sphere pixel-by-pixel on a 2d surface?

What is the equation for a sphere in 3 dimensional space?

Using this, at any point along x, how do you find the range of y on the sphere?

Using this, how do you calculate the z coordinate?

How do you find the surface normal from these 3 coordinates?

2.1 A possible class structure

We need Lights, a Sphere, a Shader (that can be part of the sphere) and a Viewer. We need vectors to store
position and direction, and we need colors that add and multiply component-wise. To complete this class
structure for the project, ask yourself:

• What is the interface that Lights provide?

• If Objects are the drivers of the shading routine, what information do they pass to the shader to get
a color back for each point on their surfaces?

Example C++ code: (There might be errors in this, it was typed up *very early in the morning*)
Lights.h:

class Light {
public :

Light () ; // De fau l t Constructor
virtual ˜Light () ; // De fau l t Des t ruc tor
Light (f loat x , f loat y , f loat z , f loat r , f loat g , f loat b) ;
const Color getColor () ; //Return va lue may not be modi f ied .
virtual Vector3d ge t Inc id ence (Vector3d & point) = 0 ; // Abs t rac t f unc t i on

private :
Color i l l um ina t i o n ;
Vector3d po s i t i o n ;

}
class PointLight : public Light { //Chi ld o f L igh t

PointLight (f loat x , f loat y , f loat z , f loat r , f loat g , f loat b) ;
Vector3d ge t Inc id ence (Vector3d & point) ; // Implement parent f unc t i on .

}

Lights.cpp:

Light : : Light () {} ; // De fau l t Constructor
Light : : Light (f loat x , f loat y , f loat z , f loat r , f loat g , f loat b) {

this−>x = x ; this−>y = y ; this−>z = z ; // ’ t h i s ’ i s a po in t e r
} ;
const Color Light : : getColor () { return i l l um ina t i o n ; // data in parent . } ;
PointLight : : PointLight (f loat x , f loat y , f loat z , f loat r , f loat g , f loat b) :

Light (x , y , z , r , g , b) { } ; //Parent i n i t i a l i z e d by : L igh t (. . .)
Vector3d PointLight : : g e t In c id ence (Vector3d & point) {

Vector3d in c i d enc e ;
Vector3d l i g h t p o s = pos . ge tAbso lu t ePos i t i on (mu l t i p l i e r) ;
i n c i d enc e . ca l cu la t eFromPos i t i ons (&point ,& l i g h t p o s) ;
return i n c i d enc e ;

} ;

4

