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ABSTRACT

We present a report on the activities concerning the radioastronomy technique known as in-
terferometry. We first discuss coordinate systems, coordinate system conversions and precession.
We prelude our technical findings with an exhaustive discussion on radio interferometry theory,
in which we cover interference, point source response, and notes on our technical equipment.
The main body of the report consists of using interferometry to measure accurate declinations
of point sources and accurate angular diameters of extended sources. We cover both the theory
and practice of these two fundamental uses of interferometry. Finally, we present brute force and
non-linear least squares techniques. We studied the sun and moon as our extended sources and
the Crab Nebula as a point source with UC Berkeley’s undergraduate interferometer.

1Document created February 13, 2007
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1. INTRODUCTION

Radio astronomers use the technique known as interferometry to create and study a fringe pattern caused
by the interference of a source’s radio emissions between multiple radio telescopes. This technique combines
multiple radio telescopes into a single detector, allowing us to achieve angular resolutions much higher than
a single radio telescope, since a single dish is limited by diffraction according to λ

D
(Where D is the diameter

of the antenna dish), while we effectively create an aperture as big as the baseline length between the
telescopes. Radio astronomy is limited by the very long wavelengths we observe at, which cause very low
angular resolutions, and this method allows us to vastly improve this limit, since we can effectively create
arbitrary-length baselines to have incredible resolving power (For example, two radio telescopes separated
by the diameter of the earth), and we can boost sensitivity by connecting incredibly sensitive telescopes such
as Arecibo in Puerto Rico and the Very Large Array in New Mexico.2

2. COORDINATE SYSTEMS

A study of the celestial bodies demands, first and foremost, a systematic approach to labeling the positions
of the celestial and stellar objects. Several coordinate systems are in use today, of which the Horizontal
coordinate system and the Equatorial coordinate system are of special importance to us.

Fig. 1.— The Horizontal and Equatorial Coordinate System

The Horizontal coordinate system uses the (az, alt) coordinates to describe any position in the sky relative
to the observer’s position on the earth. This system divides the sky into a plane tangent to the observer’s
position on the earth, with altitude being the angle above or below this plane, and azimuth the compass
angle from North. The convenience of this system comes from its observer-centered nature. For example, any
object below the horizon has a negative altitude, and is thus not visible. Our radio telescopes are also on an
altazimuth mount, which means that it has two perpendicular directions of movement directly corresponding
to the (az, alt) coordinates.

The Equatorial coordinate system is independent of observer position and fixed to the stars3, not the earth.
It uses the the (α, δ) coordinates (known as Right Ascension and Declination respectively) to describe the

2Which is why my radio professor says your optical professor needs to get his act together. We radio astronomers have great sensi-
tivity and resolving power, and we are diffraction-limited, versus most optical telescopes, that are seeing-limited by atmospheric
effects.

3Except for precession effects, which causes a slow drift of objects against this coordinate system, and needs to be accounted for
on a scale of years to dozens of years.
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position of an object in the sky relative to the celestial equator and celestial poles, which are the projections
of the earth’s equator and poles. The declination measures the angle above or below the celestial equator,
and the right ascension measures the angle east of the Vernal Equinox.4

2.1. Accounting for Precession

Since we use the Celestial Coordinate System that defines Declination and Right Ascension against the
sky, we must account for precession of stars against the celestial “background” that occurs over a multitude
of years. To do this we use a set of IDL instructions that takes a known D, RA value, convert it to degrees,
and calculate the precession over a known time interval:

precess, ten(h, m, s)*15, ten(deg, min), thenyear, nowyear, /PRINT

This IDL command will print out the new, precessed (α, δ) values.

2.2. Converting between Equatorial and Horizontal coordinate systems

The position of celestial objects are normally given in the Equatorial coordinates, since this is observer
and (relatively) time independent. Our telescopes are configured in the Horizontal coordinate system, so we
need to convert between these coordinate systems.

There is two rotations involved in converting (α, δ) to (az, alt). First we rotate around the equatorial
poles by an angle equal to the local sidereal time. This changes the right ascension coordinate to hour angle,
which is the angular distance between the object and the local meridian5 Secondly we rotate the celestial
equator to change the hour angle and declination into azimuth and altitude respectively.

Thus, the step-by-step procedure we use to convert from the Equatorial to Horizontal coordinate system
is:

• Convert the Declination to Hour Angle, noticing that the hour angle goes in the opposite direction as
the right ascension:

ha = LST − α (1)

• Reduce the spherical coordinates of (α, δ) to a vector of rectangular coordinates:

X =





cos δ cosha
cos δ sin ha

sin δ



 (2)

• Create a rotation matrix that rotates and flips the rectangular coordinates to convert (α, ha) to (az, alt),
where φ is the station’s terrestrial latitude:

R =





− sinφ 0 cosφ
0 −1 0

cosφ 0 sinφ



 (3)

• Apply this rotation matrix to the rectangular (α, ha) vector to generate the vector in rectangular
coordinates that represents the point in the sky according to the Horizontal coordinate system.

X
′ = RX (4)

4Vernal Equinox: The point where the sun passes from South to North for an observer in the Northern Hemisphere. In other
words, the place where the Great Circle of the Celestial Equator and the Great Circle of the Ecliptic (the sun’s path) intersect
each other.

5Meridian: The imaginary great circle that passes through the celestial poles and the observer’s zenith.

3



• Convert the rectangular coordinates to spherical coordinates:

azimuth = arctan

(

X ′[1]

X ′[0]

)

(5a)

altitude = arcsin (X ′[2]) (5b)
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3. INTERFEROMETRY

3.1. Monochromatic Point Sources

A monochromatic point source in the sky emits electromagnetic waves that we observe using radio tele-
scopes. We can easily model the wave from a monochromatic source as the intensity of the electromagnetic
wave. Incidentally, this is also what we would expect to measure if we were using a single detector.

E(t) = cos (2πν0t) (6)

The electromagnetic wave that we observe from the source is for all practical purposes an infinite plane
wave with all points moving parallel to each other when it reaches our detector.6 Different observers will
detect the wave at different point in time. Since we assume that the plane wave approaches the earth
uniformly, the time difference will depend only on where the observers are located. Figure 2 and Equation
7 demonstrates the simplest 2-dimensional case of this path length difference for two observers separated by
distance D. This corresponds to an interferometer with a north-south baseline observing a source moving
along the meridian.7

δP (h) = D sin (h) (7)

X YD

h
delta P

X

Y

Fig. 2.— Path Length Difference (δP) between and observed E(t) of two telescopes observing the same
source

3.2. Two-Telescope observation of Point Sources

Interferometry exploits the wave nature of light by mixing the signals of multiple detectors to form an
interference fringe. Consider a single plane of a plane wave falling in on our detectors. The relative path
length difference between the detectors means that a specific plane of the incoming plane wave reaches each
detector at a slightly different time. This time difference offsets the different waves by different amounts.
This offset logically gives rise to phase differences between the waves. The fringe is caused by destructive
and constructive interference between the waves in the mixing process. The incredibly powerful aspect
of interferometry is its dependence on this relative path length between detectors and the related relative

phase difference between each detected signal. The differences in phase is related only to the path length

6From the geometric optics viewpoint, this means that all the rays from the source approach parallel to each other.
7Please note that this is a 2D simplification of the actual case! Rarely do we have objects moving perfectly along the meridian.
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differences and the wavelength of observation. The total distance the waves travel - on the order of parsecs
- is inconsequential to the path length difference between the detectors.8 The interferometer fringe is not a
static interference pattern. Sources moves across the sky as the earth rotates, and the relative path length
δP changes as the angle h changes. Figure 3 gives a graphical demonstration of this.

Fig. 3.— Change in observed fringe pattern, relative to change in apparent baseline, as the source moves
through sky. (Source: Sky and Telescope Feb 2007)

Our two dimensional model can be generalized to a much more useful three dimensional case using simple
geometry. For an east-west baseline, the distance D between the two detectors is a function of declination.
For simplicity, we assume we are on the equator (the math remains general, but visualization is significantly
easier!) and we have an east-west baseline. The celestial equator intersects our local zenith, and a declination
of zero implies that the source lies on this great circle. As long as the declination remains zero, our 2D
simplification holds perfectly, with angle h becoming the hour angle. On the other extreme, if the object lies
on the horizon, i.e. is has a declination of 90◦, a change in hour angle does not change the path length at
all, since we are rotating with respect to an axis that is parallel to the two beams of the telescope. It is easy
to infer the geometry from here on. Thus, the time difference9 between the two detectors is directly related
to the sine of the hour angle and the cosine of the declination. The constant factor that converts this to a
time difference is the distance between the detectors divided by the wavelength we are observing.

τg(h) =

(

By

c
cos δ

)

sin h (8)

It is important to remember that our beautiful generalization only holds until the incoming waves hit the
detector. The two waves travel through a long path of electronics that enables the mixing and sampling
process, and this adds a constant path length difference since the path of each wave differs from the other. We

8We are, of course, limited by the intensity drop off as the path length increases, but interferometry is equally effective for two
sources with the same apparent magnitude and wildly varying distances.

9we call this the “geometric time difference” τg since it only depends on the geometry of the observation
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could theoretically try to minimize this difference in path length through our electronics, but each tiny cable
cut that introduces a couple of micrometers difference will introduce a detectable path length difference. The
sensitivity of the interferometer can be seen as a boon, but since we can easily take this constant difference
into account mathematically, all we need to assure is that the path length difference through the electronics
does not change over the course of a single observation. Thus, our complete formula for the measured time
difference between the observation of the same source by two detectors is:

τnet(h) =

(

By

c
cos δ

)

sinh + τc (9)

3.2.1. Interferometer Response to a Point Source

We can examine the interferometer response to a point source now that we have an expression for the time
difference between the signals from two detectors. If we combine equations 9 and 6 we find the equations for
the signal detected by each dish:

E1(t) = cos (2πν0t) (10a)

E2(t) = cos (2πν0[t + τnet]) (10b)

The interferometer we used is a multiplying interferometer. The mixing process multiplies the two signals
together, producing the interferometer fringe output F (t) = E1(t)E2(t)

F (t) = cos (2πν0t) cos (2πν0[t + τnet]) (11)

This expression, albeit mathematically correct, is difficult to work with in fitting curves to data. It
contains the product of two non-linear functions with a dependence on each other. It would be preferable to
have this as a sum of unknowns, each term with only one unknown. Through the use of two trig identities,
this formula can be converted into the form F (t) = Asm +Btm. We will discuss the importance of this form
in section 4.2. First we expand it into two cosines10, one dependent on the sum of the arguments, the other
dependent on the difference:

F (t) =
1

2
[cos(2πν τnet) + cos(4πν t + 2πν τnet)]

Notice that the first term varies at a very high rate. We are not interested in this term since it does
not contain any information that is not already present in the other term, and solely depends on the time,
not the time difference. We drop this term, and we will filter this out using a low-pass filter in our electronics.

Note: τnet(h) can be expressed as τnet(t) since the angle h is the hour angle ha. ha changes with the
Local Sidereal Time, expressed in hours. Thus, we can make the substitution h = t.

F (t) = cos(2πν τnet) = cos(2πν [τg(t) + τc]) (12)

10cos(A) cos(B) =
1

2
[cos(A − B) + cos(A + B)]

7



Expanding11 this term with the following substitutions

ν

(

By

c

)

=

(

By

λ

)

A = cos (2πν τc)

B = sin (2πν τc)

produces the Interferometer Response:

F (t) = A cos

[

2π

(

By

λ
cos δ

)

sin h

]

− B sin

[

2π

(

By

λ
cos δ

)

sin h

]

(13)

3.2.2. Local Fringe Frequency

The argument of the sine and cosine function in the interferometer response can be seen as a constant
times time. The declination for a point source does not change except for precession, which is on the order
of years, not days, so we do not need to take it into account for our short measurement cycles. The hour
angle is directly proportional to time, so we call the hour angle “time”12. We want to develop the concept
of a local fringe frequency, which we can do from these observations. The argument is the product of a
constant and sin(h). This product makes the sine and cosine functions oscillate by a frequency dependent
on the current hour angle. Through Taylor expansion, we can derive the result for the local fringe frequency
in terms of cycles per radian in the sky, which is as follows:

ff =

(

By

λ
cos δ

)

cos(hs) (14)

3.3. Our Interferometer

We used two 1 meter radio dishes with a baseline length By = 9.05m at an observing frequency of
ν = 10.698GHz , λ = 0.028 m in the X-band. This gives us an angular resolution equal to:

θ =
λ

By
=

0.028 m

9.05 m
= 10.6 ′ (15)

Thus, any object with an angular size less that 10.6 arc minutes will appear as a point source to our
interferometer. This means that just about every object in the sky is a point source!

11cos(A + B) = cos(A) cos(B) − sin(A) sin(B)
12The hour angle ha = lst − ra, see section 2.2
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4. ACCURATE MEASUREMENT OF THE DECLINATION OF A POINT SOURCE

4.1. Background & Observations

If we look back at equation 13 we notice that the interferometer response to a point source is a function
of position in the sky (assuming you know your baseline and observation wavelength). We can exploit this
fact to use interferometry to accurately measure positions of point sources.

We tracked the Crab Nebula (M1) over the course of a night as it made its journey across our night sky.
The Crab Nebula is an extremely bright radio source. It is powered by the Crab pulsar, a ˜1000 year old
supernova remnant about 1kpc distant. By tracking it over the course of a full transition of the sky, we
record the fringe frequency as it changes by quite a lot. This data will allow us to solve for the unknown
position values we look for.

4.2. Analysis: “Brute Force” iterative least squares fitting

We are interested in finding very accurate declination values for M1. If we assume we know the hour
angle with a high degree of precision, we can use the technique known as “Least Squares fitting” to find
the value of the true declination. How do we do this? After observing M1 over the course of one night, we
have rough data against which we can try to fit our generic mathematical model we developed in section
3.2.1. We want to fit equation 13 to our data. There are two unknowns (A and B), each dependent on the
path length differences inside our electronics. We have two coefficients, each dependent on the hour angle.
We have our data which we are fitting against, keeping in mind that the data has some noise and other
uncertainties. Before we get lost in the math and intricacies, let’s evaluate what we are trying to do. We
have a theoretical interferometry response to what we are observing. We also have the data we collected by
observing the Crab Nebula. Least Squares fitting solves the unknowns in our theoretical model, which we
use to find the closest match of the theoretical model to our data. Linear Least Squares fitting normally
takes on the form Asm + Btm + Cum + Dvm = ym, where we are solving for A through D.

Before we begin fitting curves to our data, we first prepare our data to ensure the best possible fit. Figure
4 shows the data we collected as we tracked the Crab Nebula. I normalized this data by fitting a 10 degree
polynomial to it (showed in figure 4. The difference is the original signal situated around 0.

Fig. 4.— Crab Nebula Raw, Poly-fitted and Normalized Data

We approach this problem in the “Brute Force” way. We can solve for the two unknowns A and B using

9



least squares - but ultimately we’re interested in the declination value. The solution is simple - we reverse-
engineer! Since we pointed our telescope at the source, we have a rough idea of where it is in the sky. We
take this as our starting guess value, and do multiple fits using least squares around this known value. Since
error calculation is a very important and integral part of the Least Squares process, we end up with a graph
of guessed declination values versus calculated sample variance s2. It is obvious that the best fit will be the
one with the smallest sample variance, and once we have this value, we know the declination!

I attacked this problem by trying to match as much data as possible. The strange result of my fits can
be seen in figure 5. Since any object can only have one declination value, the two dips in sample variance
points to a problem somewhere.

Fig. 5.— The sample variance of our least squares fit plotted against the guessed declination.

If any of our assumed constants change over the course of an observation, our fits will be thrown off. The
constant that is most easily influenced by external circumstances is our observation wavelength λ, since it is
determined by oscillators in our equipment. Someone hitting a cable or bumping into the table, sudden heat
changes and a plethora of other events can alter λ. The easiest way to still retrieve useful information from
our data is to divide it into chunks and work with each chunk separately. Through inspection, we should
quickly be able to tell if this is indeed where the problem lies or not.

After dividing our data into several chunks, each of about 3 hours wide, I fitted against each of these
chunks. My suspicions were confirmed when the second dip did not show up until i reached hour angles
in excess of 0.5 hours. Truncating my data to the section h = 3.8 to h = 0.3 allowed me to match my
theoretical value to the interferometer fringe response, as figure 6 and 7 shows.

We used the variances in derived coefficients to find the sample variance, which allowed us to get a
quantative measure of the errors in our fit. Another important and helpful indicator of the accuracy of our
fit is the covariance - the degree to which the uncertainty in one derived coefficient affects the uncertainty in

another derived coefficient. Through some more matrix manipulation in IDL we found the covariance matrix
at our best fit to be the following:

[

1.0 0.00081224966
0.00081224966 1.0

]

(16)

It is very clear that there is very little dependence between the uncertainties in variables. This is another
indicator that we do have an excellent fit!

10



Fig. 6.— Least Squares fit, guessing from to with a truncated data set from ha=-3.8 to ha=0.3

4.3. Results

We managed to find coefficients that fitted our theoretical response to our measured response even though
there was some problems with our data. We successfully used Least Squares fitting and error analysis to
find an accurate declination value of the Crab Nebula, namely 20◦ 0′ 18.95′′ (0.38406436 rad). This was
derived by XS guessing in 1

30000
intervals over the range (20◦, 22◦). My covariance matrix indicated that the

uncertainties in each variable had little dependence on each other, and my sample variance was at its smallest
at this point. I plotted the predicted Interferometer response against the data in figure 7 and examined the
shape of the two curves. The mathematical error indicators were confirmed by the excellent match in shapes
of the two curves. I took the liberty of checking my derived declination value against the accepted position
of the Crab Nebula and found my value within 10 arc-seconds.

Fig. 7.— Least Squares predicted curve against normalized data (zoomed).
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5. MAKING MAPS OF THE SKY - INTERFEROMETRY OF EXTENDED SOURCES

5.1. Interferometry Response to an extended source

In section 3.2.1 we examined the interferometry response to a point source. As the object moves across
the sky13, the apparent baseline changes. A different viewpoint of this system is looking at the interferometer
projecting a fringe pattern against the sky. As the sky rotates, the source moves through this fringe pattern
to give the fringe response R(t) where t is equal to the hour angle14. The response for a point source is given
by equation 13. For an extended source15, we need to integrate this point source response over the extent of
the source. At any point in time, the fringe pattern F(h) covers the source and the interferometer response
R(h) is the integral of the fringe pattern times the source intensity distribution.

Some clever mathematical manipulation brings us to the final usable form of the interferometer response
to an extended source:

R(h) = [A cos [α(h)] + B sin [α(h)]] ×

∫

I(∆h) cos [β(h, ∆h)]d∆h (17)

Notice that this is the point source value modulated by another function! We rewrite this as:

R(t) = F(t) × MF theory (18)

MF theory =

∫

I(∆h) cos (2πff∆h)d∆h (19)

The modulation function contains crucial information about the source structure. Since the modula-
tion function is generally the Fourier transform of the source intensity distribution, we can calculate the
modulation function and find interesting properties about the source.

5.2. The Modulation Function & Calculating Diameter

We will be observing circular sources in the sky - the sun and the moon. The intensity function of a round
source is the following:

I(∆h) =
(R2 − ∆h2)1/2

R
(20)

We incorporate this into equation 19 to find the modulation function for the sun or moon:

MF theory =
1

R

∫ R

−R

(R2
− ∆h2)1/2 cos (2πff∆h)d∆h (21)

What do we do with this equation? It gives us the function by which the point source interferometer
response is modulated when we study an extended source. It is a function of ffR, thus it depends on the
fringe frequency given by equation 14 and the diameter of the source!. How can we use our data and
this theoretical function to find this diameter? The aspect of this formula that we can use to our advantage
is its zero points. For a declination value δ = 0 and a known hour angle value h! = 0, the only factor that
can make the interferometer response equal to zero is the modulation function. (In other words, we have to
assume that the declination is small and fairly constant for this method to work). We numerically evaluate

13In reality, the earth turns under the sky, and the sky rotates above us.
14We can do this since we study the sun and moon, which are always close to zero declination and we have an east-west baseline.
15Keep in mind that “extended” is defined by our array’s angular resolution λ

D
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this integral to create the plot of the modulation function. Notice the axes! Y is the relative amplitude of
the modulation function versus a range of ff × R value on the X-axis.

If we have the zero points given by this theoretical model (and after numerically evaluating the integral,
finding the zero points simply means reading it off the plot) and we have the exact points where our
interferometer recorded an amplitude of zero, we can trivially calculate the R value - the diameter of our
extended source!

Why does this happen? The fringe frequency changes across the sky - thus, as the source moves through
the sky, the number of fringes across it will vary. When an integer number of fringe periods cover the source,
integrating the point source response over the extended source gives an answer of zero.

Fig. 8.— The numerically calculated Modulation Factor.

5.3. Finding exact hour-angle of zero crossing using Iterative Least Squares

Our discussion in section 5.2 alluded to the fact that we need to know the hour angle of the zero crossing
of our interferometer response extremely accurately if we want to determine the radii of extended sources.
This poses a challenge, since the zero point gets lost in the noise as the interferometer response goes to zero.
To overcome the challenges of finding the zero point, we can use the techniques we learnt in finding the
declination of a point source. Least Squares fitting comes to mind. We approximate the function we want
to fit as the point source response modulated by a straight line - this is accurate as long as we stay in the
region of the zero crossing. Thus, we want to fit the following as the fringe model:

F (ha) = [A cos (2πff (h)) + B sin (2πff (h))] (h − hz) (22)

The obstacle is the non-linearity of the function we want to fit. Since the hour angle (or time, for that
matter) that we want to calculate is the argument of trigonometric functions, we can’t just do an easy least
squares fit. Luckily, we can transform this into a differential problem and solve for correction values using
least squares. We transform the problem of finding hz through fitting Equation 22 into the problem of
finding hz through fitting:

Fmeasured − Fguessed = (δA cos α) + (δB sin α) + (−δhz)[A cos α + B sin α] (23)

13



where α = 2πff and Fi is the interferometer response. We start with guessed values of A, B and hz. We
use least squares to find δA, δB, δhz, which is “correction” values we add to our guesses. If we start with a
reasonable initial guess, this process converges to the true hz zero crossing hour angle.

14



6. 1D PLOTTING OF THE SUN AND MOON

Since our interferometer has a fairly low angular resolution, our best extended sources are our very own
sun and moon. We hope to observe them and derive their angular size - the only measurement possible for
sources close to δ = 0 with only two detectors like ours. The technique is applicable to any interferometry
setup, though, whether we’re at the VLA or on top of Campbell Hall. We use the techniques discussed in
the previous section to find the hour angle of the zero crossings, find ffR and calculate angular diameter.

6.1. Background & Observations

Fig. 9.— Interferometry Observation of the Sun and Moon.

The response to the sun looks exactly as we expect - a fringe frequency modulated by some Modulation
Function. Notice the overall sausage-like shape of the interference pattern. This resembles the point source
data modulated by another function dependent on hour angle. (Due to an unfortunate series of technical

difficulties, we lost some data around 1h, luckily this did not affect finding the zero crossings! Also, notice

the tiny gaps in the data every hour - this is where dish calibration happened.)

It is much harder to notice the sausage-like shape for the moon data, but the zero point around an hour
angle of 3h is reasonably apparent. Also notice that a simple visual comparison shows that the zero-point
seems to be at a very similar position to that of the sun’s zero points. This agrees with our intuition - since
the moon can eclipse the sun, the two has to be very similar in angular size.
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6.2. Analysis

6.2.1. Sun

Fig. 10.— Fitting the fringe frequency modulated by a straight line to a small section of the sun data around
the zero point to find the exact hour angle of the zero crossing. Notice how the shape of the original data
(blue) coincides with the fitted plot (green). The final predicted zero crossing is indicated by the vertical
line.

After applying the procedure described in section 5.3 to the raw sun data with an initial guess of h=3.2,
we computed ha as 3.0587864 hours for the zero point of the sun fringe.

6.2.2. Moon

Fig. 11.— Fitting the fringe frequency modulated by a straight line to a small section of the moon data
around the zero point to find the exact hour angle of the zero crossing. The fitted plot in green is artificially
offset by -0.00003, notice how the shape coincides well with the original data (in blue). The final predicted
zero crossing is indicated by the vertical line.

We apply the same procedure to the moon data after subtracting a two-degree poly-fit to normalize the
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data. We find ha to be 3.0862544 hours for the zero point of the moon fringe.

6.3. Results

We found hour angle values for the sun and the moon’s zero crossings. We also compute the fringe
frequency at the theoretical zero point that we get from analyzing equation 21 and figure 8.

6.3.1. Sun

We calculate the fringe frequency at the computed zero-crossing hour angle using formula 14 to find
ff = 228.54 cycles/radian We know the second zero occurs theoretically at ffR = 2.240. Thus, we find
our diameter to be:

D =
ffR

fdata
=

2.24

228.54
= 33.68 arcminutes (24)

6.3.2. Moon

We calculate the fringe frequency at the computed zero-crossing hour angle to find ff = 203.75 cycles/radian.
Again, we know the second zero’s theoretical position. Thus, we find the diameter to be:

D =
ffR

fdata
=

2.24

203.75
= 37.88 arcminutes (25)

This is slightly larger that expected, but it might be attributed to noisy data or computer arithmetic errors.

7. CONCLUSION

This lab covered much more ground than can be presented in only one report, but I believe I managed
to cover all the fundamentals in this document. We started our foray into interferometry by applying
our knowledge of heterodyne mixers to understand the signal flow path of an interferometer to enable the
interference of received waves, thereby forming a fringe pattern. We covered the equatorial and horizontal
coordinate system, where our most-used result was the relationship between hour angle and right ascension.

Once we could locate and observe sources we took a detailed look at radio interferometry. By using wave
properties and mixing theory we derived the expected interferometer response to a monochromatic point
source. This formula (Eq 13) formed the basis of interpreting and analyzing our data. First we used it to
calculate accurate declination values using Least Squares fitting for the unknown A and B coefficients. We
managed to find the declination of the Crab Nebula to within 10 arc seconds using this technique. We moved
on to modeling the interferometry response to an extended source as a modulation function multiplied by
the point source response. This model allowed us to calculate a theoretical modulation function for a round
source. We used nonlinear least squares fitting to find accurate values for the hour angle of the sun and
moon’s fringe zero crossing. By combining the results from these two methods we manage to find the angular
diameter of the sun.

We learnt new data analysis techniques, our programming proficiency increased dramatically, and we
learnt to go without sleep for long periods of time, all crucial skills needed in the pursuit of science.

17



8. APPENDIX

8.1. Least Squares source code

pro leastsquares, X, Y, a, Ybar, s_sq, sigmaA, nCov

;+

;Takes the least-squares of the data, and calculates the errors

;

;ARGUMENTS

;X - The coefficient matrix

;Y - The data matrix

;

;RETURN VALUES

;a - The derived coefficients

;Ybar - The predicted data points

;sigmaA - The uncertainties in the derived coefficients

;s_sq - The sum of the squares of the residuals

;ncov - The normalized covariance matrix

;-

M = size(X)

M = M[2]

N = size(X)

N = N[1]

XX = transpose(X)##X

XY = transpose(X)##Y

XXI = invert(XX)

a = XXI##XY

Ybar = X##a

deltaY = Y - Ybar

s_sq = transpose(deltaY)##deltaY

s_sq = s_sq/(M-N)

s_sq = s_sq[0]

diag = XXI[(N+1)*indgen(N)]

vardc = s_sq*diag

sigmaA = sqrt(vardc)

dc = XXI[(N+1)*indgen(N)]

ncov = XXI/sqrt(dc##dc)

end
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