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ABSTRACT

We present a report on activities concerning radioastronomy bench measurements performed
during the first 3 weeks of enrollment in Astronomy 121 at UC Berkeley. We performed several
experiments to become acquainted with the equipment and signal processing involved in the Radio
Astronomy Lab. This document focuses on four main areas: Fourier transforms, investigating the
Nyquist frequency1, investigating Dual Sideband Mixers, and phase detection using mixers. Each
area depends heavily and contains information on Discreet Fourier Transforms, IDL programming
& organization, and the UNIX operating system. This document strives to be an overview of
each of these sections in context of the main areas.
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1. FOURIER TRANSFORMS & POWER
SPECTRA

The field of signal analysis find its richness
in the multiple representations that signals can
take, with the transform between the time and
frequency domains being the most fundamental.
Fourier transforms take a signal representation
from a time-basis to a frequency-basis through the
use of orthogonality between basis vectors and a
mathematical change of basis.3

The general Fourier transform integral is:

E(ν) =

∫

E(t)e2πjνtdt (1)

This equation in its discreet-time manifestation
is what we use to analyze the discreet-time sam-
pled signals:

X(ν) =
∑

X(n)e−2πjνn (2)

Many algorithms exist that implement this
change of basis vectors, most notable the Fast
Fourier Transform. For this lab we use a pure
mathematical rewriting of the Discreet Fourier
Transform to calculate the frequency coefficients,
and wrap this in a small IDL procedure4 that al-
lows us to take the DFT of any signal that we
possess a time representation of, which consists of
a time and a data array.

Notice that the DFT takes in a real signal span-
ning a real segment of time. It base-changes this to
a series of complex values corresponding to the in-
put signal’s frequency content. Upon doing the in-
verse of this, we expect to find the original real sig-
nal again. This process can potentially be slightly
complicated by the limited accuracy that comput-
ers afford us, and it is not uncommon to see ma-
chine error cause an imaginary part on the order of
10−09 or smaller on our reconstructed signals. It is
acceptable to zero this miniscule imaginary com-
ponent, which is what we did in the cases where
an inverse transform was confirmed to return an
imaginary part of this small order of magnitude.

3A detailed analysis of Fournier transforms is beyond the

scope of this paper. For more formation, see “The Struc-

ture and Interpretation of Signals and Systems” by Lee &

Varaiya.
4Please see 6.1 for the IDL code

The Fourier transform representation itself is
a series of complex exponentials, making them
slightly difficult to visualize. What is more inter-
esting is the power distribution over the frequency
domain, which is what we can plot through find-
ing the length of each complex exponential in the
series. The power of each component is thus given
by ℘ = |X(n)|

2
. This is the procedure we follow

to create spectra of our data.

2. SAMPLING AND ALIASING

Every analysis we do with data captured from
nature depends on the data being captured accu-
rately and correctly. Without excellent data, sci-
ence becomes impossible, and since our only data
acquisition method is that of sampling, we thor-
oughly investigate the properties of digitally sam-
pling analog signals. Sampling is the process by
which an Analog to Digital converter gives the in-
stantaneous digital value of an analog signal. This
process is repeated at a certain frequency to build
a digital approximation of an analog signal. We
want to investigate the relationship between the
sampling frequency and the signal frequency that
allows for an accurate approximation.

Sampling at very high frequencies, except for
the technical difficulties in building equipment
that can handle it, causes bloated data files that
contains much more information that we need for
accurate analysis. Sampling at very low frequen-
cies will clearly misrepresent fast signal. We hope
to find a bounding number on the ratio of νsignal

to νsample

2.1. Experiments

We set up an iterative test to investigate the re-
lationship between νsignal and νsample. We picked
a convenient sampling frequency νsample = 1.0 ×
106 Hz and varied our signal frequency over the
range νsignal = (0.1, 0.2, ..., 0.9), taking 64 sam-
ples for each of the νsignal values. We also used
an oscilloscope to measure and record the approx-
imate period of each sampled sine wave.

We expanded our dataset by doing two addi-
tional experiments to broaden our understanding
of the extreme cases. For the first extreme case,
we sampled at the same frequency as the input
signal (νsignal = νsample). For the second case, we
sampled at a frequency much lower than the signal
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frequency. (
νsignal

νsample
>> 1)

2.2. Data & Data Analysis

We applied the Discreet Fourier Transform to
each of the 9 νsignal datasets, and plotted both
the time and the frequency representations, visi-
ble in Figure 7. We can now correlate the known
νsignal, the recorded approximate periods, and the
frequencies (νdft) of the Fourier transform peaks,
visible in Table 1.

νsignal (Hz) psignal (s) νdftHz

1 1.0 × 105 100µs 1.0 × 105

2 2.0 × 105 50µs 2.0 × 105

3 3.0 × 105 34µs 3.0 × 105

4 4.0 × 105 25µs 4.0 × 105

5 5.0 × 105 20µs 5.0 × 105

6 6.0 × 105 17µs 4.0 × 105

7 7.0 × 105 14µs 3.0 × 105

8 8.0 × 105 12µs 2.0 × 105

9 9.0 × 105 11µs 1.0 × 105

Table 1: Analyzed Nyquist experiment data

As the signal frequency increases, the Fourier
transform shows the power distribution moving
to increasingly higher frequencies, until we reach
νsignal

νsample
= 0.5. This is the point where we sam-

ple at double the frequency of the input signal.
When we consider the time behavior of the sine
wave input, we easily come to the conclusion that
this means we take two samples per period. If we
sample at the right points during the period, we
get the peak and trough values of the sine wave,
which is what we see in the plots.

A very interesting symmetry is revealed when
we progress beyond this ratio value of

νsignal

νsample
=

0.5. As Table 1 shows, our input frequency is still
increasing linearly, but our DFT power spectrum
plot shows that the power is concentrated around
lower frequencies. In fact, the higher frequen-
cies seems to be reflected around the νsignal fre-
quency where νsignal = 1

2
× νsample. Upon inspec-

tion of the Power Spectrum over an interval much
larger than

(

− 1

2
× νsample, +

1

2
× νsample

)

, we find
that the power spectrum actually repeats, and as
νsignal increases, the various peaks move in oppo-
site directions, thus looking as if the signal’s fre-
quency content was reflected. This does not mean

that we can extract relevant information from sig-
nals that are sampled at a ratio

νsignal

νsample
> 0.5, it

simple mirrors the periodicity that the mathemat-
ics shows in the Fourier series coefficients.

We examine what happens when νsignal =
νsample) as our first extreme case. Since we are
sampling only once per period, we expect to see all
our samples to be the same value. This is indeed
what we measure (see Figure 1), demonstrating
that sampling at the same frequency as the signal
gives us no useful information.

Fig. 1.— 1kHz signal sampled at 1kHz

Fig. 2.— High frequency signal sampled at low
frequency.

As our last extreme case, we sample at a fre-
quency significantly lower than our signal fre-
quency. In other words, we blatantly violate what
our previous data shows us about sampling at a
frequency such that νsignal < 1

2
× νsample. Collab-

orating with another group on collecting data, we
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decided to pick fairly arbitrary values, collect data
on our own, and discuss the results. The signal fre-
quency should go through a multitude of periods
between single samples, thus we expect data that
is in no way representative of the actual incoming
waveform. Sampling a 10MHz signal at 11.7 kHz,
our result in Figure 2 confirms our prediction.

2.3. Results & Discussion

We find that the minimum sampling frequency
that allows for a perfect digital representation is
bounded by a lower value that we call the Nyquist
Criterion or Nyquist Frequency. The sampling
rate should preferably be several times higher
than the highest frequency present in a signal so
that your data contains several points per period.
None-the-less, we can now put a solid numerical
bound on the ratio between the signal and sam-
pling frequencies that will assure accurate digital
representation of an analog signal:

νsignal

νsample

<
1

2
(3)

3. DSB MIXERS

Our investigation of radioastronomy techniques
now turn to heterodyne mixing and the Dual Side-
band Mixer. The DSB mixer allows us to combine
two signals into one through multiplication, and
can best be understood through a review of sine
& cosine mathematics.

The multiplication of two cosines can be ex-
pressed as:

Es cosω1 cosω2 =
Es

2
(cos (ω1 − ω2) + cos (ω1 + ω2))

(4)

Thus, the multiplication of two waveforms
through the mixer produces a waveform that con-
tains both the sum and the difference of the two
incoming waveforms. This seemingly innocuous
property forms the basis of nearly every informa-
tion transmission method in use today, since it
allows us to manipulate the frequency of signals
without losing their information. In radioastron-
omy we collect information from nature – specifi-
cally the sky. Almost always the information that
we want is not at a frequency that we can readily
sample at. For example, when we investigate the

21cm hydrogen line, we have an incoming signal
at 1420 MHz, with all the information we want in
a narrow band surrounding this frequency. It is
practically impossible to feed that signal directly
into a sampler since it is simply too high of a fre-
quency. Mixers allow us to mix this signal with
a local oscillator frequency, thereby shifting the
band we are interested in down towards a prac-
tical frequency we can sample. It also allows us
to transmit the information at a lower frequency,
where attenuation in cables is less.

Thus, if we have a signal ω0 ± |δω| and a local
oscillator of frequency ω0, we can model the effect
of the mixer through the following equation:

Es cos [(ω0 ± |δω|)t] cos [ω0t] =

Es

2
(cos [±|δω|t] + cos [(2ω0 ± |δω|)t])

Thus, the slight offset δω between the local os-
cillator and signal frequencies becomes shifted to
be centered around the DC frequency. This makes
for easy, painless sampling once the high frequency
components are filtered out.

3.1. Experiments

We want to model the process of extracting a
δω signal from a ω0±|δω| signal by using a mixer.
In practical terms, we would like to sample a signal
that oscillates around a very high base frequency
(say, the 21cm hydrogen line) and we need to use a
mixer to shift this signal into our sampling range.

We use two frequency generators, one set at ω0,
the other at ω0 ± |δω|. We take the two outputs
and mix them together, taking the mixed signal
into the oscilloscope and the ADC to sample it.
Since we want to experiment with the process, we
choose our frequencies such that we can sample all
the frequency components in the output. We ex-
pect these to be ±|δω| and 2ω0 ± |δω|, thus we
want our sampling frequency to be νsample >

2(2ω0 + |δω|). We set our ω0 = 1MHz, and
our δω = 0.05. We sampled at 10MHz, and sep-
arately recorded both νsignal = ω0 + |δω| and
νsignal = ω0 − |δω|. This means we have the com-
plete output of the mixer ready for analysis.
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3.2. Data Analysis

As always, we start with a Fourier analysis of
the incoming signal. Figure 3 shows the time and
frequency domain representation of our lower side-
band mixed signal. It shows the sample plot and
the power spectrum of νsignal = ω0−|δω|. The up-
per sideband signal looks almost exactly the same.
The signal looks like a fast-moving sine wave en-
veloped by a slow-moving sine wave, which cor-
responds to our mathematical model. When we
study the frequency domain, we see that it has
peaks at ±|δω| and at 2ω0 ± |δω|, exactly as pre-
dicted.

We now want to extract the lower signal. This
corresponds to filtering out the high frequencies
that we do not want to sample, concentrating on
moving the information we need into the range
of our equipment’s capabilities in later labs. We
achieve this by zeroing the high frequencies us-
ing IDL. We can then perform an inverse Fourier
transform to create a signal containing only the
low-frequency parts of the mixer’s output - effec-
tively extracting the information that was situated
in proximity to the νlo frequency.

This process is slightly tricky, since the arrays
we work with must stay symmetric to reproduce
a real-valued signal. The input to this process
consists of real-valued samples, and we expect to
regenerate a real-valued signal. To ease the pro-
cess, we used IDL’s powerful “where” command
that selects certain elements according to a given
command. Figure 4 shows the final product of the
low pass Fourier filtering (note the scale change!).

Fig. 3.— Signal generated by mixing 1MHz and
1.05MHz, Sampling at 10MHz

Fig. 4.— Low-Pass Filtering a mixed 1MHz and
1.05MHz signal

3.3. Results & Discussion

Inspecting the filtered versus the original sig-
nal shows us the effects that mixers allow us to
achieve. Keep in mind that the input to the mixer
is two separate sine waves as you peruse the plots.
We managed to successfully extract a 50kHz wave
from a 1MHz modulated wave. This is exactly
the process that the radio telescopes rely on to
shift the high frequencies into more manageable
frequency ranges, using hardware filters that ac-
complishes what we managed to do by hand in
IDL.

4. DSB MIXER AS A PHASE DETEC-
TOR

We used the mixer to experiment with two
waves that are close together in the frequency do-
main, both with the same phase. When we use
multiple radio telescopes connected together to
gather data using interferometry, a similar situ-
ation occurs. The major deviation from our pre-
vious example is that all the radio telescopes in
an interferometry setup are receiving at the same
frequency - it is the phase that can differ between
the telescopes as the earth rotates and causes a
Doppler shift between telescopes.

We can expand the math to account for a con-
stant difference between two signals of the same
frequency:

cos (at + φ)×cos (at) =
1

2
(cos (φ) + cos (2at + φ))

(5)

We also want to consider the case where there
is only a slight offset in frequency between the two
waves:
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cos (at + φ) × cos (bt) =

1

2
(cos ((a − b)t + φ) + cos ((a + b)t + φ))

4.1. Experiments

We set up the two frequency generators to gen-
erate sine waves at 1MHz. We then set the first
frequency generator to a phase angle of 90 degree,
and we increment the second frequency generator
in steps of 5 degrees from 10 to 360 degrees, taking
a DC voltage measurement for each step. Since we
measure the DC voltage, we only log the constant
part of the signal, corresponding to the cos (φ).
We plot this data over time.

To experiment with two signals that are slightly
offset, we carry out the same procedure, except
in this case we set the first frequency genera-
tor to 1MHz and the second frequency generator
to 1MHz+1Hz, and sample as we increment the
phase.

4.2. Data Analysis

Figure 5 shows how the DC voltage forms a sine
wave as we vary the phase. Thus, the DC volt-
age corresponds to the relative phase difference
between the two signals, which is also the cos (φ)
term in Equation 6.

Fig. 5.— Two 1MHz signals, varying the phase
over time.

Figure 6 shows the DC voltage plot over time
as we vary the phase for the signal that mixes the
1MHz and 1MHz+1Hz signal. It looks like random
noise, which is an accurate representation of the

DC measurement in this case! Because of the one
Hertz difference between the two signals, there is
no pure DC in the output signal. The voltmeter
thus picks up random time-average values of the
low frequencies in the signal.

Fig. 6.— Mixed 1MHz and 1MHz+1Hz signal,
varying the phase over time.

4.3. Results & Discussion

We showed that the phase between two same-
frequency signals can be accurately described us-
ing the DC component of their mixed signal. This
DC measurement of phase is exactly what interfer-
ometry depends on, and we expect to see this same
technique in other areas of radioastronomy to find
the phase difference between otherwise equal sig-
nals.
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5. CONCLUSION

This lab probed all the necessary parts of the field to gain an understanding of the underlying electronics,
signal processing and programming that supports radioastronomy. We examined the most fundamental part
of data analysis — the acquiring of data through digital sampling. Through our study of the ratio

νsample

νsignal

we found a strong lower limit on our sampling rate in relation to our signal. The relation 2νsignal < νsample,
known as the Nyquist Criterion, is our basic guideline in our sampling of the data we want to analyze. We
took this knowledge into our study of mixers, where we examined how to use mixers to shift frequencies
into such ranges that they can be sampled by our equipment. The principles of this technique of heterodyne

mixing was then applied to phase differences, and we found a way to measure the phase between two signals.
The progression of our knowledge through these steps have led us to the point where we understand the
concepts behind interferometary, and we can now head into serious radioastronomy observation.

6. APPENDIX

6.1. IDL Code

pro take_dft, fsample, nsample

;+

;NAME: TAKE_DFT, fsample, nsample

;PURPOSE:

; Generate a sinusoid, feed it into the computer, and plot a time and frequency representation.

;INPUTS:

; FSIGNAL, the frequency to generate

; FSAMPLE, the sampling frequency

; NSAMPLE, the sampling number

;-

;Create the time array

time = findgen(nsample)

time = time/fsample

data = sampler(nsample, fsample) ;Aquiring data

plot, time, data, /xstyle, /ystyle

print, ’’

print, ’Press s to save this sample, anything else to exit.’

pressed_key=get_kbrd()

case pressed_key of

’s’: begin

;Create DTF power spectrum

freq_a=(findgen(nsample)/nsample-0.5)*fsample

dft, time, data, freq_a, fourier

power=abs(fourier)^2

filename1 = ’’

READ, filename1, PROMPT=’Please enter an appropriatefilename’

READ, fsignal, PROMPT=’Please enter a Vsignal value: ’

!p.multi=[0,2,2]

save, time, data, nsmaple, fsample, FILENAME=’DFT_’ + filename1 + ’.sav’

psopen, ’DFT_’ + filename1 + ’.ps’, xsize=5, ysize=6, /inches
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plot, time, data, /xstyle, /ystyle,title=’Sampled V_sig=’+$

string(fsignal,format=’(%"%d")’)+’Hz at V_smpl=’+$

string(fsample,format=’(%"%d")’)+’Hz for ’+$

string(nsample,format=’(%"%d")’), xtitle=’Time in seconds’, ytitle=’Volts’

plot, freq_a, power, xtitle=’Frequency in Hz’,$

ytitle=’Power’, title=’Spectrum of Sample Data at V_sig=’+$

string(fsample,format=’(%"%d")’)+’Hz’

psclose

end

else: print, ’Not saved...’

endcase

print, ’Thank you, data capture completed!’

end

6.2. Nyquist Criterion experiment data
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Fig. 7.— Nyquist Criterion experiment, Sampling at 1MHz
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