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Inverse Kinematics is used to pose models by specifying endpoints of segments rather than individual
joint angles. We will go through the steps of deriving a simple inverse kinematics problem. We are given a
model in a starting state and a goal point to which we want to move the end of the arm, and we will solve
for the new joint angles. In doing this we will use two areas of knowledge - trigonometric relationships to
describe the model we’re posing, and linearization to find successive approximations of our answer.

1 Problem Description

We want to calculate the change in joint angles needed to bring the endpoint of our joint to the given
position. Forward kinematics is concerned with the endpoint’s position as you change the joint angles.
Inverse Kinematics is concerned with the joint angles needed to produce a specific endpoint’s position. A
basic understanding of trigonometry should enable us to write down the forward trigonometric equations1.

There is a collection of possible joint angles, all of which bring the endpoint’s position to the wanted
goal. An analytical solution becomes extremely complicated. Thus, we will render this as a minimization
problem, so that we can apply root-finding techniques to it.

1.1 Terminology

• DOF - Degrees of Freedom - a parameter we can control. In 3-space: 3 translations, 3 rotations.

• Joint - A connection between bodies with some DOF that modifies and propagates its transform to its
outbound body.

• Inbound body - A body determining the transform of a given joint.

• Outbound body - A body whose orientation is determined by the given joint.

• Root Body - A body with a fixed position set by the global transform.

• Root Joint - the joint on the root body (thus, fixed position) with some DOF (generally 1 or 2 rotations).

• Linearization - Finding a linear approximation to a nonlinear function

• Root-finding - Finding the solution to f(x) = 0.

1Section 2
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2 Forward Kinematics

Here we’ll derive the forward kinematics equation for the arm of three joints in the following picture. We’ll
describe the endpoint in terms of the joint angles and lengths. I’ll start by reminding you of the relationships
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between angles and sides found in the right angle triangle of Figure 1(b):

s ∗ sin (Ω) = o (1)
s ∗ cos (Ω) = a (2)

Write down the equations for p1x and p1y (the x and y coordinate of the endpoint of the first joint) in
terms of θ1 and l1.

p1x = origin + l1 sin (θ1)

p1y = origin + l1 cos (θ1)

Write down the equation for p2x and p2y in terms of p1, θ2 and l2. Think about the angles very
carefully!

p2x = p1x + l2 sin (θ1 + θ2)

p2y = p1y + l2 cos (θ1 + θ2)

Write down the equation for p3x and p3y in terms of p2, θ3 and l3. Then expand it out to find p3x and
p3y in terms of the three joint angles (θ1, θ2, θ3) and body lengths (l1, l2, l3).

p3x = p2x + l3 sin (θ1 + θ2 + θ3)
p3x = origin + l1 sin (θ1) + l2 sin (θ1 + θ2) + l3 sin (θ1 + θ2 + θ3)

p3y = p2y + l3 ∗ cos (θ1 + θ2 + θ3)
p3y = origin + l1 cos (θ1) + l2 cos (θ1 + θ2) + l3 cos (θ1 + θ2 + θ3)

We can now describe the position of the endpoint of our chain in terms of the joint angles. Notice that
we defined all our rotations as clockwise from the y-axis. This is arbitrary, but you need to be
consistent.
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3 Inverse Kinematics

We want to find the set of joint angles that produce a specific end position. Assume you are given a
configuration for your skeleton, and you want to move it to a new position. Thus, we want to compute the
change in joint angles needed to produce the change in endpoint positon. From lecture (and the
trigonometry on the previous page) you know that the analytic solution for p3x and p3y in terms of the three
joint angles (θ1, θ2, θ3) is hard and messy. We will circumvent this by finding a linear approximation to the
change in position bought about by the change in joint angle.

3.1 Linearization and Jacobians

Consider the single joint in the following figure:
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Figure 1: Single 1 DOF joint.

We plot the path of p1 as it varies over θ1, and we plot the tangent of the path at the current point of p1.
Notice how the tangent is a close approximation to the actual path in the region around p1. Linearization
is the process of approximating a nonlinear function by its tangent around a point.

In section 2 we described the actual path. We now need to find the tangent path - a straight line varying
with parameter θ. Since a tangent is just a derivative of a function at some point, calculate the derivative
of p1x and p1y (from section 2) with respect to θ1 (remember your trigonometric derivatives...):

∂p1x

∂θ1
= l1 ∗ cos(θ1)

∂p1y

∂θ1
= −l1 ∗ sin(θ1)

Since the tangent is a line, and an equation for a straight line from some point a is f(x) = m∗(x−ax)+ay

we can now write the function p1(x) that determines the position of p1. Assume the joint is currently at an
angle of θ1 at point (px, py) and we want to find pl1(θ), the linear approximation of p1(θ) around θ1:

pl1x(θ) = px +
∂p1x

∂θ1
(θ1) ∗ (θ − θ1)

pl1y(θ) = py +
∂p1y

∂θ1
(θ1) ∗ (θ − θ1)
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Consider the two functions you just found. They describe the position of the joint as a linear function of
the joint angles. In other words, we’ve linearized the forward kinematics equation. What we did was write
out the Taylor expansion for the function p1x and p1y around p1’s current position.

3.1.1 The Jacobian matrix

So far we’ve been working with the endpoint’s position p1 as two coordinates, p1x and p1y. We can collapse
these two coordinates into p1 and define p1(θ) as a vector function - a function returning a vector. We just
found a partial derivative for p1x and p1y - the change in each coordinate with respect to each joint angle.
We will now introduce the Jacobian:

Definition 1. The Jacobian matrix is a matrix of all the first order partial derivatives of a vector function.

This means that the Jacobian matrix describe how each coordinate changes with respect to each joint
angle in our system. You can think of it as a big function with two arguments - the joint angle and the coor-
dinate - and it describes the first order linear approximation between these two arguments. Mathematically,
we write this as:

Jij =
∂pi

∂θj
pi = ith coordinate of endpoint p; θj = jth joint angle. (3)

The Jacobian matrix is extremely useful, since it describes the first order linear behavior of a system. In
spring-mass simulations it is used for integration purposes. In IK it is used to successively approximate the
joint angles needed for a given endpoint. Let’s apply this to our original three-joint arm:
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Figure 2: 3-jointed arm

Then the Jacobian will be the following 2 by 3 matrix (2 coordinates, 3 joint angles). You should notice
that you computed some of these terms in section 2 and section 3.1 and you know how to compute them all.

J(θ) =


∂p3x

∂θ1

∂p3x

∂θ2

∂p3x

∂θ3

∂p3y

∂θ1

∂p3y

∂θ2

∂p3y

∂θ3

 =


(

l1 cos(θ1) + l2 cos(θ1 + θ2)+
l3 cos(θ1 + θ2 + θ3)

) (
l2 cos(θ1 + θ2)+

l3 cos(θ1 + θ2 + θ3)

)
l3 cos(θ1 + θ2 + θ3)(

−l1 sin(θ1)− l2 sin(θ1 + θ2)
−l3 sin(θ1 + θ2 + θ3)

) (
−l2 sin(θ1 + θ2)

−l3 sin(θ1 + θ2 + θ3)

)
−l3 sin(θ1 + θ2 + θ3)


We can now rewrite out original taylor expansion of a coordinate around a point determined by the joint
angles θcurrent (The last two equations in setion 3.1) in terms of the vector function p1(θ) and the Jacobian:

p(θ) ≈ plinear(θ) = p(θcurrent) + J(θcurrent)(θ − θcurrent) (4)

This is a linear vector function that approximates our forward kinematics equation. And since it is linear,
we can employ all our linear algebra techniques to find its inverse. Congratulations, you linearized the
kinematics problem.
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3.2 Solving for Joint Angles - Pseudoinverses and Root Finding

The original problem we set out to solve is described by figure 3.2:

p

Goal

Δ p

Figure 3: 3-jointed arm with goal position

What must the change in joint angles be to achieve the change in endpoint position ∆p?
Look again at equation 4. Let’s define ∆p and ∆θ in terms of both the quantities in figure 3.2 and the
quantities of equation 4:

∆θ = θgoal − θcurrent (5)
∆p = Goal− pcurrent (6)

≈ plinear(θgoal)− pcurrent (7)

Notice that I collapsed all the joint angles into one θ variable. We can do this by letting θ = (θ1, θ2). Thus,
θ is a vector. Notice that in lecture professor O’Brien followed a slightly different approach by defining θ∗

as a linear combination of θ1 and θ2.

Now rewrite equation 4 in terms of equations 5 and 7, and manipulate it so that you find an equation
for ∆θ:

∆p = J(θcurrent) ∗∆θ

∆θ = J(θcurrent)−1 ∗∆p

We just found an expression for the change in joint angles needed to move the endpoint from its current
position to the goal position, in terms of quantities we can compute. But this still doesn’t completely
work! J(θcurrent) in our example is not even a square matrix, thus there is no way to invert it. This is the
same problem we originally had - there is a whole set of solutions that satisfy our goal position, thus the
matrix is not invertible. Luckily we have ways of dealing with that for matrices.
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3.3 How to solve this set of equations

We’re now entering the realm of higher level linear algebra, thus I will unfortunately not go through the
derivations of how things work, but rather only propose a way to find the solution to ∆θ.

You should have found the following equation on the previous page:

∆θ = J(θcurrent)−1 ∗∆p

But, as we noted, J(θcurrent)−1 is almost never invertible, thus we have to compute a pseudoinverse. The
pseudoinverse of a matrix has most but not necessarily all of the properties of an inverse, and it not necessarily
unique. Since we are already taking a linear approximation of our p(θ) function, we can justify taking another
approximation, since we have to account for these assumptions in our final solution in either case. (We will
do this by successive iterations of this algorithm).

3.3.1 Calculating a Pseudoinverse using Singular Value Decomposition

The Singular Value Decompositon is a technique that allows us to decompose any matrix into three matrices,
two square orthogonal matrices and a possibly non-square diagonal matrix:

T = USVT (8)

There exists algorithms to compute the SVD decomposition of a matrix. Once you’ve found the SVD
decomposition, the pseudoinverse of T is defined as:

T+ = VS+UT (9)

where S+ is S with all its nonzero diagonal entries replaced with its corresponding reciprocals. Why does
this work? Replacing the diagonals with its reciprocals is the same as inverting the matrix, but in the
case that there are zeros on the diagonals, we can’t take the reciprocals, so we calculate an approximate
inverse by taking the reciprocals only of the nonzero terms. Since U and V are orthogonal, their transpose
is their inverse. Thus the pseudo-inverse of T consists of the inverse of U, V and an approximate inverse of S.

Thus we can compute a pseudoinverse of the jacobian, and we can solve for the change in joint angles
needed to achieve the change in position we want. Except this change is still only a linear approximation.
So, we’ll turn it into a root-finding problem, which we’ll explain in the last section of this worksheet.

3.3.2 Root-finding

Root-finding is the numerical process by which we solve for x in the equation f(x) = 0. With some simple
algebra, we can rearrange our terms so that our equations are in this form. Rewrite the equation you derived
on page 5 in the form f(x) = 0:

You can now apply any of the many root-finding techniques to it, but you will realize that Inverse
Kinematics is a really nice problem in this case, and a simple iterative approach can work. I will justify this
statement as follows: If we compute an approximate change in joint angles needed to achieve this change in
position, we can simply move our system of joints and bodies to this new location and repeat the procedure
we just went through. This is known as Newton’s Method, and is a well-studied algorithm for finding
roots to something of the form f(x) = 0. We implement it with successive iterations of finding the change
in joint angles using the pseudoinverse of the jacobian. There is one more caveat - Newton’s method does
not always converge.

6



3.3.3 Convergence

Newton’s method does not always converge. Thus, calculating the approximate change in angle we need
and simply applying that interactively does not necessarily bring us closer to the correct solution. We can
amend this situation by implementing a binary search on the change in angle:

1. Calculate the new position the current change in θ would cause.

2. Calculate the distance from the goal.

3. If the distance decreased, take the step.

4. If the distance did not decrease, set the change in θ to be half the current change, and try again.

3.3.4 Minimization

We can also cast everything we’ve done as a minimization problem. We’re attempting to minimize the error
between the current position and the goal position (∆θ = θgoal − θcurrent), and we’re achieving that using a
linear approximation of the function and applying root-finding techniques to it. This is a common method
to solve these types of problems, and appears in numerical simulations in physics, math and engineering.
We implicitly did exactly this, thus I mention it for completeness.

4 Summary and Overview

We’ve gone through a long derivation of a general numerical approach to solving the inverse kinematics
problem. To summarize our approach, the following diagram demonstrates a simple IK solver:

Calculate 
Jacobian

Calculate new Joint Angles

Check distance to goal

Have we reached the 
goal?

Move the 
system to a 
new position

Done
yesno

Figure 4: A simple IK solver.

Finally, the Jacobian is a very powerful tool. To extend this system to allow for multiple goals with
multiple arms as one IK system, you simply expand your Jacobian to include all the joints. If you want to
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constrain some joints not to move at all, you can simply reduce your jacobian not to include them. More
advance techniques to implement constraints make use of Lagrangian Multipliers. Also, it is worth noting
that our solution is a local solver. We make an approximation of the function that holds in the area around
the current joint angles.

4.1 Real World IK Solvers

Real World IK Solvers are not necessarily built in the same manner as this tutorial explains, but this is one of
the accepted approaches. Others are particle-based IK and Cyclic Coordinate Descent. We did not cover one
important facet though - real world IK solvers does includes a strong framework for setting constraints. You
often want to use an IK solver to pose your model, but you want specific joints to have specific orientations
- the modeler wants control over which list of joint angles is picked by the solver.

For more information: http://billbaxter.com/courses/290/html/
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