
Niels Joubert, Rohit Nambiar, Navin Lal, and Mark Sandstrom

Rockband Vision is a computer vision system capable of playing the Rockband console game
autonomously. Rockband is an interactive band simulator that allows human players to play music
according to on-screen musical notation using custom musical instruments. Our system is capable
of interpreting the Rockband video feed presented to human players: it is able to read the musical
notation in the feed and manipulate the game's guitar input to play the game. This project relied on a
breadth of knowledge from the computer graphics, numerical analysis and physical computing
areas. We present it as our final project for Berkeley's Computer Graphics course. In this paper we
will present our design and implementation of this system, including the challenges encountered
and design decisions made while building the system.



Problem Analysis

Rockband present the player with a guitar fretboard, rendered from the perspective of someone
looking along the guitar's neck. Along the fretboard are 5 strings — 5 regions where notes can be
drawn — lying along the horizontal axis. The vertical axis of the fretboard represents time, and
notes move along it accordingly. At the bottom of the fretboard is the region that defines the current
state of the guitar. If a note enters this region, the player is expected to push the strum toggle while
simultaneously hitting the corresponding note button on the guitar. Notes move vertically along the
5 strings from the top of the fretboard to this region.

Figure: The Rockband screen, with white highlighted regions (left to right): Fretboard, Single String and Note

Our computer vision system monitors the fretboard presented to the player with the aim of
imitating the guitar's state as notes move into the region where a player would play the note on the
guitar. The fretboard stays a consistent shape, but the relative size depends on the amount of people
playing a multiplayer game. The absolute size of this region depends on several other factors
including camera model and physical setup. The fretboard is semitransparent black, allowing
animations of bands to be seen through it. It can also display various patterns as players gain
energy. Lines signifying the barlines in musical notation moves across it at speeds relative to the
tempo of the song.

Notes move across the board at a constant speed throughout a song, but tempo differences
between songs are manifested as variations in the speed of notes along the fretboard. Notes are
rectangular blocks of various colors, and the colors can change as different scenarios unfold during
gameplay. Notes can have tails in the form of colored lines following the note. Normal notes are
expected to be played with a single hit of the strum toggle switch, while notes with tails need to be
played by keeping the strum toggle engaged for the duration of the line. During this time the color
and brightness of the tail changes.



Proposed Solution

We segmented the project into 3 major sections to consider:
• video capturing and processing
• note recognition, timing and tracking
• hardware interfacing

We need real-time pixel-level access to a video feed coming from a camera pointed at the screen.
The project becomes extremely simple if you have access to the actual video feed from the XBox
(as done by the "Slashbot" and "AutoGuitarHero" projects) but we specifically wanted to work with
the video feed coming from a camera, mimicking the visual process our brain needs to work with.
To capture and process video, we used the OpenCV library. This gave us easy access to the pixel
data of the video feed and provided excellent matrix libraries.

We want to have information about the state of each string to detect and track notes as they move
across the string. To achieve this we want to inverse the perspective transform applied by Rockband
to present the moving notes, and divide the fretboard into 5 regions. This is our first major challenge
- given a matrix of pixels, how do you find a fretboard? Edge detection and feature detection
techniques might automate this step in the future, but we decided to skirt this challenge by asking
the user to define 4 points on the corners of the fretboard for us. This makes the perspective
transform and segmentation steps trivial.

We now need to find notes on each string. Since note colors can change, we decided to work
with the luminance over each string. We convert the 5 strings - 5 rectangular regions on which notes
appear - into 5 arrays of "brightness" values. We can find notes by searching the luminance array
for the characteristic features of a note's luminance on the string. To do this, we build a template
note and convolve it with the luminance array. This has the effect of accentuating the notes
matching the template in a recognizable manner. We can now apply derivative analysis with
specific parameters to find the peaks created by notes on the string.

Our design so far produces a list of positions in a frame. We now need to track these positions
over multiple frames, finding the point in time when they need to translate into a button press on the
guitar. We drew up several designs for tracking notes. Initially we considered finding notes as they
move across a first region, time them until they reach a second region, and use this data to compute
note velocity, allowing us to predict when it would reach the point where a hardware event has to
occur.

We discarded this idea for a two-stage approach that is more resilient to noise. Each frame's
luminance plot gets added and averaged to a common buffer for each string. We approximate how
far each note moved between the previous and current frame to find how far to shift the buffer
containing the old frames. We now monitor the lowest part of this buffer, sweeping a cursor over
the region we're shifting each frame to find peaks to translate to pushing the guitar's buttons. This
approach is both resilient to transient noises and accentuates the features we want to detect.



Design Analysis

This project requires a camera, computer, guitar controller, gaming console, and a display unit. The
specifications of these items in our setup are shown below.

Camera: Panasonic Prosumer NV-DX100
Computer: 2.2Ghz Macbook Pro [2GB Ram]
Controller: Modified XBox Fender Statocaster controller
Gaming Console: XBox 360 with Rockband game
Display: HP DLP Projector, Samsung 20" Widescreen display (1:3000 contrast ratio)

A firewire cable was used to stream data from the camera to the PC, allowing for low-latency
transmission. The guitar was modified with a prototyping board to allow for communication
between the computer and the Xbox.

Our system can be described by the following flow diagram. A full explanation of each segment
follows.



Data Selection

First we capture a frame from the camera. As a calibration step, the user must set up the four
corners of a trapezoid identifying the area of the fretboard. While it would be possible to
automatically detect this area, we decided to simplify our system by having the user manually
specify reference points by clicking on the screen. An inverse perspective transformation is then
calculated using these reference points. The transformation is applied to the captured frame, and the
resulting image is cropped to the interior of the convex hull of the reference points, which is a
rectangle after transformation. The result is that the notes travel at a constant velocity along the
vertical access and remain at a fixed horizontal position.

Figure: Source video and interface for specifying transformation reference points (left) and inverse perspective image
(right).

We then convert the image to grayscale for further processing. This conversion is done by
selecting the maximum RGB component for each pixel. Conversion in this manner allows for easier
identification of notes since the notes are drawn using bright, saturated colors. No specific color
information is actually used to identify the individual notes, meaning that the camera doesn't need to
be color calibrated.

We then process each string. This is done by dividing the inverse perspective image into 5 equal-
width images, one for each different type of note (green, red, yellow, blue, orange). A luminance
plot is then generated for each string by averaging the pixels along each row of the individual string
images. Notes are detected by identifying peaks in these luminance plots.



Figure: Gray scale image of a single string (left) and the corresponding luminance plot (right).

Peak Detection

Peak detection is the process by which the location of notes are pinpointed in the luminance data
generated for each string displayed on the fretboard drawn by Rockband. The initial plot generated
by the data selection module contain flat, noisy peaks where bright notes appear on the screen. To
ease the process of peak detection, we filter this data with the aim of generating sharp peaks at the
center of notes.

Convoluting the incoming data with a template of the note generates peaks where notes appears.
This accentuates the position of the note and eases our peak detection. Since notes have a well-
defined shape, we can estimate the correct note size for the template from the trapezoid defining the
fretboard on screen. This is the same trapezoid used to generate the inverse perspective transform to
extract the fretboard from the overall screen. The relation was empirically determined to be:

average width = (URx + LRx)/2 - (ULx + LLx)/2
average height = (LLy + LRy)/2 - (ULy + URy)/2

template width W = (average width) / (average height) * 40



Figure: Example of raw data (left) and filtered data (convolution with 50-point box)

The data is thresholded to remove peaks in the median noise and retain only the bright peaks
created by notes. The algorithm determining this threshold is an open-ended design question, and
we attempted several approaches to dymanically adjust the threshold.

We decided to use the luminance data itself as the input to the thresholding algorithm. We found
that the background brightness varies from string to string due to both background animations and
outside interference from light sources affecting the camera and display. Thus each string has its
own thresholding value, computed from the luminance of the string's region itself.

Since we're interested in the range of values that form the bright peaks in the data, we decided to
calculate the threshold as a fraction of the standard deviation above the mean of the data. The
fraction (alpha in the equation below) of standard deviation added to the mean gave us a parameter
to tune this algorithm by. We initialized the algorithm with an alpha value 1.5, which worked
satisfactorily.

new threshold = mean + alpha*stddev
alpha = 1.5

We want to create a thresholding algorithm robust enough to withstand the flashes in rockband's
animation as well as short bursts of light due to changes in the physical environment around our
camera and screen. We used exponential smoothing over time to create a temporally robust
algorithm. By setting the threshold of any frame as a weighted sum of the previous threshold value
and the newly calculated threshold, we refrain from making drastic changes to our thresholding
value. The weight of the old to the new threshold gives us the second parameter by which to fine-
tune this algorithm. For an initial value, we chose beta to be 19.0/20.0, weighing the current value
much more than the newly calculated value.

final threshold = (1.0 - beta)*(new threshold) + (beta)*(old threshold)

A drawback of this algorithm is the change in threshold that occurs as more or fewer peaks
appear on screen. For a heavily populated string, the total bright area is significantly bigger than a



scarcely populated string, and the mean of the luminance is thus relatively higher. This means that
we take a smaller part of the peak into account as the amount of visible notes on a string increases.
Although this did not hurt performance, as we will see when we describe the derivative analysis we
applied to find peaks, we would prefer to have the threshold dependent only on the background
brightness. We decided to keep this method of threshold calculation because of the limitations
imposed by varying brightness between strings, as discussed at the start of this section.

Derivative alanysis is used to find the local maxima. Peaks caused by notes are characterized by
a large positive derivative leading to maxima, as well as a well-correlated width to the template note
that was calculated in the convolution step. Note-tails, when present, cause a characteristic pattern
after the peak of the note. We use this description of note peaks to build a custom peak detector
suited for the specific input.

We find a place in the data where our derivative is bigger than +2 and the datapoint is bigger
than the threshold. This is a good indication of the start of a note. We search on through the data
until we find a place within half the width of a note into the data where the derivative becomes
negative. This allows us to threshold a significant part of the note without the algorithm failing. The
zero-derivative point is taken as the location of a peak. We now step approximately half a note
width forward and search for the next note. If we do not find a peak within a note width we consider
it a false positive and search further for the start of the next note.

Figure: Example of video input on the left, analysis done on red note, producing luminance plot with threshold and
detected peak shown on the right.



Peak Timing

Peak timing estimates how fast notes move across the screen. Peaking timing is performed by
correlating detected peak data over successive frames. If a peak is present in one frame, when the
next frame is processed the peak is correlated with the first peak past the original position. For
robustness, this correlation is done for peaks on each string. All timing data is then averaged over
time using an exponential moving average. This is important for simulating the movement of notes
in the peak tracker described in the next section; an estimation of note velocity is required for
moving data through the peaking tracking circular buffer.

To explain more in detail peak timing is done by finding the rate of change in terms of pixels and
time. To find the rate of change in terms of time, we calculate the time when we receive the current
frame and the next frame. We get an accurate time by taking the number of computer ticks and
converting it into milliseconds. We take these two times and subtract them to find the rate the
frame is changing. This is then added to the timing data which as explained before is averaged over
time using an exponential moving average. To find the rate of change in terms of pixel, we
compare each peak between two frames. We calculate the rate the pixel is moving by subtracting
the pixel position between the two frames. After we acquire the rate for each pixel we calculate the
average and then once again it is averaged over time using an exponential moving average.

Peak Tracking & Noise Reduction

Once we have detected the peaks, we store the notes in a circular buffer that is designed to
simulate their movement. Luminance values for sequential frames are added to the previous buffer
values and the result is stored back in the buffer. This accumulation of luminance data creates
distinguished peaks and helps to filter out noise. Further peak detection, thresholding, and
normalization are then done to extract the note that the cursor should hit. We place a variable-
position cursor close to the bottom of our buffer, signifying the point on screen where a hit needs to
be generated if a note is present. As the cursor sweeps through buffer, each note it passes sets the
guitar state appropriately to cause a note hit in the game. Notes are invalidated as the cursor moves
over them. To adjust for camera lag, the cursor can be moved up or down by the user.

Hardware Interface

We can now calculate the state of the guitar at any point in time using our computer vision
system. This state now needs to be interfaced to the XBox controller itself. We dismantled an XBox
controller to gain access to the control circuitry, where we injected our own interface board. We
used the Arduino microcontroller to expose a USB device that our C code can interface with. The
Arduino microcontroller stores the guitar state and uses a circuitboard designed and built by our
team to toggle the guitar's 5 input buttons and strum control.

The guitar's state consists of the boolean state of its 5 note buttons and its strum toggle switch.
Rockband segments the music in songs into a progression of 5 notes, thus the 5 buttons on the
guitar. Each note needs to be strummed by hitting the strum toggle switch, adding another input.
Thus, our guitar's state as exposed by the Arduino microcontroller is a set of 6 booleans:

state = {red,green,blue,yellow,orange,strum}



Arduino (www.arduino.cc) is an inexpensive prototyping board containing a 16Mhz MIPS
processor, a USB device and 13 programmable input/output pins. We use a simple serial
communication protocol that packs the state into a single byte and send this to arduino. Arduino
unpacks the byte into its 6 boolean values, and switches 6 of its output pins according to the state of
the guitar. These 6 pins are taken as input to our interface board.

Figure: The Arduino interface board

Our interface board consist of a transistor network connected to the XBox controller's inputs.
The transistors are connected to Arduino, causing the output from the aforementioned 6 pins to
either ground of float the controller's inputs. Thus, by pulling the transistor's input to high by
outputting a 1 from Arduino, the xbox controller's button input gets connected to the controller's
"ON" voltage level, simulating a button press. Since this whole process takes very little current, our
module is completely powered through USB.

Figure: Our RockBand interface board

We modified the guitar itself by installing 5 light emitting diodes into the neck, corresponding to
the 5 note buttons. The output of Arduino is visualized through switching these LEDs on when the



microcontroller pulls an output pin to HIGH, thus displaying the state of the button on the neck of
the guitar.

Figure: The completed guitar, with the Arduino microcontroller (red, bottom) and the interface board (red, top)
connected to the XBox control circuitry (green).



Figure: Completed XBox Guitar. The only visible change is the 5 LEDs in the neck, providing a visualization of the
buttons pressed by our vision system.



Results

The final product meets our design criteria and solves the challenge. We can play the Rockband
game successfully, reaching up to 96% accuracy on Expert-level songs. Currently out only
limitation is that we cannot play notes with tails. Our team collaborated well, with each person
being responsible for a crucial part of the design and implementation. We are pleased with our
result, and identified several areas where we would want to expand on this project in the future. We
ask the user to configure two things: the perspective transform that selects the fretboard, and the
cursor that accounts for camera lag. The perspective transform can be done automatically by edge
detecting the note board instead of through a GUI. Cursor adjustment can be automated through a
feedback control loop if we can find a data feed giving us information about how close a note hit
was. This is possible on the Nintendo Wii through a control signal, but on the XBox we would have
to revert to detecting note hits visually as they create effects on screen.

We enjoyed this project tremendously. We will be releasing the source code and accompanying
materials online in the near future.

Accompanying Media

Included with this report is a CD-Rom containing video footage of the project. We show how it
was built and how it performs. This report and video will also be made available online at
http://inst.eecs.berkeley.edu/~njoubert/

References

Slashbot http://slashbot.wordpress.com/
AutoGuitarHero http://www.autoguitarhero.com/
OpenCV http://opencvlibrary.sourceforge.net/

Contact Details

Niels Joubert, CS184-DV, niels@berkeley.edu, njoubert@gmail.com
Rohit Nambiar, CS184-AJ, jedirohit007@berkeley.edu
Navin Lal, CS184-AK, njlal@berkeley.edu
Mark Sandstrom, CS184-DH, smark@berkeley.edu, mark@deliciouslynerdy.com


	Problem Analysis
	Proposed Solution
	Design Analysis
	Data Selection
	Peak Detection
	Peak Timing
	Peak Tracking & Noise Reduction
	Hardware Interface

	Results
	Accompanying Media
	References
	Contact Details

